

NORLED

World's first ship driven by LH₂

Florø 18.09.2019

NORLED

Norled at a glance

- One of the major Ferry operators in Norway.
- Market leader within Fast Ferries («High speed crafts») in Norway and #4 Globally.
- Major player within Fjord tourism.
- Nationwide operations from Oslo to Tromsø.
- ~300 MUSD (NOK 2.4 billions) in revenue
- 1 200 employees, HQ in Stavanger
- Founded in 1855
- Innovation-driven right for more than 160 years
- Norled aims to operate with low and zero emissions

Different types of new-builds ongoing

Remontowa 4ea.

Sembcorp 3ea.

NORLED

Westcon 1ea.

ADA 2ea.

Westcon 2ea.

Oma 3ea.

From grey to green – the icon

From grey to green – the story

2015: 2022: 72 siblings in Norway The el-ferry MF Ampere is launched

The entire sector – transformed from predominantly grey to predominantly green in just a few years – huge savings in fuel costs – helps finance a renewal of the fleet

Creating yet another icon for zero emission shipping

SHIP NAME

LMG80-DEH2

World's first ship driven by LH₂

NORLED

Length82.40 mBeam16.75 mDraught2.8 m

LMG

MARIN

WESTERN

Car capacity80Truck capacity10Passenger capacity299

1 NG (3 - DO12

NORDWESTED

Hjelmeland-Nesvik ferry route

Ryfylke in Rogaland - Riksveg 13:

Hjelmeland-Nesvik Hjelmeland-Skipavik Nesvik-Skipavik

3010 meters4450 meters3890 meters

Norled operates the route today with two dieselelectric ferries.

The new contract for this route is one batteryelectric ferry, as well as the hydrogen-electric ferry, from 2021 to 2031.

Hydrogen supply

- LH₂ truck from Europe
- 3,5 tons capacity
- Every three week bunkering operations
- 150 kg daily consumption

Hydrogen arrangement

LH₂ System

Process Flow Diagram

- Safety: all PSV lines are routed to vent mast

THE LINDE GROUP

Linde

U

*LH*₂ *Tank* – *Key Data*

 Key Technical Data	
Insulation:	Multi-Layer & Vacuum
Design Pressure	10 bar(g)
LH ₂ capacity	≈3.8 tons (20% ullage)
Holding time:	15 days
Standards/Approval:	DNV GL, IGF

Technical Challenges – 1 of 2

• **System size:** Footprint on the ship quite limited!

• Holding Time Requirement:

15 days at operating pressure, but ...

- which residual amount at refueling?
- which LH₂ temperature is delivered during refueling?
- tank operating pressure during refueling?
- (Onshore) Bunkering System & Procedure:
 - develop special refueling procedure for maritime application
 - minimize or completely avoid GH₂ losses during refueling
 - → achieve sufficient distribution of subcooled liquid during refueling, and condense vapor
 - Special cryogenic coupling is under development
 - Safety study of complete bunkering procedure

Technical Challenges – 2 of 2

• Stable Operating Pressure:

- Must be maintained to support continuous vaporization and fuel cell operation. Various options available:
- 1. operate tank at low pressure: LH₂ pump/compressor necessary
- 2. operate tank at higher pressure:
 - # necessary time to build up pressure after refueling
 - # sloshing effects (low viscosity) could cause undesirable condensation of vapor (loss of operating pressure!)
 - → special vessel internals and other measures required!

• Measurement of LH₂ Level:

- Available types:
- differential pressure
- radar, capacity
- special types: neutron ray, Neon bubble
- → reliability of these measurements under maritime conditions?

Hydrogen arrangement

Fuel cell system

POWER & AUTOMATION

World leading innovative company of electrical propulsion systems

Westcon Power & Automation's Battery & H₂ hybrid laboratory

- Fully integrated energy-system test bench with batteries, fuel cells, drives, switchboards and energy management system
- Dynamic loads
- Facility for testing of next generation hydrogen-hybrid system for future marine projects
- Simulation and optimization of control strategies for hydrogen-hybrid systems
- Hjelmeland ferry testing

OpenBridge Design System

- Harmonising next generation maritime workplaces
- New technologies and open innovation
- Consistent design across vendors
- Cost effective methods, processes and tools

POWER & AUTOMATION

BLUE

Energy optimization

- 1. Trip info
- 2. Vessel's schedule
- 3. Trip profile
- 4. Instant consumption
- 5. Current energy storage
- 6. Trip consumption
- 7. Battery charging

Data logged to Cronolog databases with 3rd party interface possibilities

The LH₂ vessel is being built at Westcon Yard in Norway, delivery 1Q 2021

