

Aquatera and MRE projects world-wide

Ian Johnstone Senior consultant

19 September 2019

400 sustainable energy projects

250 marine energy projects

Aquatera: a world-leading business in sustainable island energy

10 marine array projects

30 marine energy technologies supported

Working in **20** countries

45 staff & associates

20 strategic energy plans

100 onshore wind projects

Based in **Orkney**

Thinking locally acting globally

many other places

aquatera

Summary of recent projects inc H2

 Shapinsay low carbon vessel project

• Low carbon ferry option analysis

Hydrogen offshore mapping

 Hydrogen opportunities in the north sea oil and gas sector

HOP – Hydrogen Offshore Project

Shapinsay low carbon transport project

S aqaatera

Shapinsay low carbon transport study

Problem:

- Limited grid connection to mainland Orkney
- Community owned wind turbine being shut down regularly
- Small out of hours ferry funded by community

Possible solution:

- Ferry fuelled by either electricity or Hydrogen produced from wind turbine
 - Fuelled renewably
 - Reduced cost
 - Turbine not shutdown so much so able to claim subsidy (Feed in Tariff)

Shapinsay low carbon transport study

- Vessel study
 - No hull design but engine type
- Infrastructure study
 - Options for both electric power or H2
- Financial analysis
 - High level cost model

Pre-screening

	Use of curtailed electricity	Use of reasonable amount curtailed	
	,	energy	
Full Electric Engine	Yes	Yes	\checkmark
Electric Hybrid	No	No	×
Plug-in Electric	Yes	No	×
Full Fuel	Yes	Yes	\checkmark
Cells Engine			
Hybrid Fuel	Yes	Yes	\checkmark
Cells Engine			
Direct Burn	Yes	Yes	\checkmark
Hydrogen			
Hydrogen Co-burning	Yes	No	×

2nd phase screening

Criteria	Assessment factors	
Engine Safety and reliability	Accidents:	
Engine Availability Timescale	Engine availability:	
Engine Technical Characteristics	Engine design suitable for Shapinsay route: Curtailed energy used: Overall energy demand:. Engine weight: Engine dimensions: Switching and Load Management Options: Refuelling/Recharging:	

Hydrogen conclusion

• The hydrogen production

- hydrogen refuelling system with a 21N m³/h electrolyser which would be enough for the vessel
- produce the daily hydrogen requirements in about 20 hours, if operating continuously and the storage system can be designed to suit the vessel

• There are two suitable electrolysers

- PEMEC or AES that have a similar capital cost
- More detailed investigation into various parameters such as water supply availability, cost and track record are needed to finalise the best option

Preferred Option - Direct H₂ combustion vessel

- Existing petrol outboards converted to run on hydrogen
- 9.5m catamaran powered by twin
 135 HP Honda petrol outboards
- run on petrol as a backup

- Hydrogen storage system
 - high pressure cylinders (200 bar) were recommended
 - provide the hydrogen storage for 5 days
 - The storage system is flexible and modular

North sea hydrogen integration

Client - Oil and Gas Technology Centre

- 3 Stages (3 projects)
 - Mapping renewable assets
 - Option analysis of hydrogen production in offshore oil and gas operations
 - Develop a test centre to take hydrogen production offshore

Mapping renewable energy resources

Five types of renewable energy resource were considered:

Energy source comparison

aquatera

Small pools – power optimisation

uatera

- There are over 300 oil and gas small pools in the UK sector of the north sea
- Small pools serviced by tie backs are currently serviced by umbilicals
 - Bespoke design
 - Expensive approximately
 - Not designed to be reused
- How can they be avoided?
- Can H₂ provide a solution?

Example of results for fixed wind

a quatera

Hydrogen as alternative energy export

Hydrogen as an EOR enabler

- Reforming gas offshore to generate CO₂ for EOR and H₂ for export or power generation (small pools)
- SMR or ATR Technologies for conventional H2, CO₂ 'by product' of H₂ production used for EOR
- Repurposing of Jacket and topsides offers decommissioning deferment potential

aquatera

Thank you and any questions ?

