

AUV – The steps and challenges to make it truly Autonomous

Subsea Innovation Day Torstein Olsmo Sæbø Research Manager, Underwater Robotics 16. September 2019

The family of the stand when the stand

What is an Autonomous System?

Remotely operated

Pre-programmed

HUGIN Autonomous Underwater Vehicle (AUV)

Tidligere leverte Hugin-systemer (prototyper) i bruk på KNM Karmøy. (Bilde: Sjøforsvaret)

HUGIN AUV

Forsvarets siste bestilling er en milepæl i overgangen til mer autonom krigføring

Why do we want Autonomous Systems?

- Cost efficient
- Scalable
- Reduced personnel risk
- Less routine tasks
- Increased security
- «Fancy» improves sales
- Improved performance

Increased autonomy

Supervised

Accompanying surface vessel Acoustical updates of status, commands and position

Truly autonomous Adaptive plan Adapt to environment, status and sensor data to reach mission goals

Autonomy vs predictability

- In a pre-planned, non-autonomous AUV operation mission duration and coverage are fixed, while quality is unknown
- With adaptive behavior you **have** to choose between:
 - Unknown coverage
 - Unknown duration
- We have to change how we design AUV operations with respect to
 - Ship and crew time
 - Weather situation
 - Coordination with other systems

Typical misunderstandings

• Machine learning / deep learning / AI is the answer (even tough we don't know the question)

• Many small systems are cheaper and better than one big system (swarms are the future)

• Regulations and certifications have to be completely rewritten to fit new technology

Single-mission concept demonstrated during MANEX'13

Area search In-mission SAS processing

In-mission ATR

In-mission replanning

In-mission EOID

The next year...

Critical technology components

- Communication
- Navigation
- Energy supply
- Sensors and sensor processing

- Validation / Perfomance estimation
- Automatic datainterpretation
- Replanning and autonomy
- Error handling

The next steps to make AUVs truly Autonomous

- More on-board processing -> provide information instead of data
- More autonomy, meaning reactive behavior
- More intelligent sensors
- More intelligent sub-systems
- Collaborative systems -> needs common standards
- «Internet of things»
- Cloud storage and processing

The challenges in making AUVs truly Autonomous

- Identifying areas and defining concepts where the utility value is clear
- Sufficiently focused development
- Industry takes responsibility for creating new markets
- Sensible ambition level for technological milestones
- Access to enough and representative training data

The AUV revolution – 1995-2	2005		
Side scan sonar Detection of ground mines	The SAS revolution – 2000-2010		
	Detection and classification of ground mines from one pass	The autonomy revolution	
		Detection and classification of ground mines from one pass	
		Identification in a second pass in the same mission	

Deep Sea innovation Centre (SFI)

- Increase competence of marine minerals
 - > 30 PhD students
 - > 60 MSc students
 - Co-supervision from industry
- Partners: UiB, NORCE, FFI, HVL

Deep Sea innovation Centre (SFI)

- Build competence within:
 - Exploration for Marine Mineral Resources
 - Inspection of ocean infrastructure
 - Environmental monitoring

- Establish foundation for new technologies and solutions
 - "Real" autonomy
 - Deep sea operations in very rough terrain
 - Collaborative systems
 - New and improved sensors
 - Real-time, on-board data analysis

Envision multiple AUVs launched from shore collaborative exploring the seabed and jointly adapting their mission. Using bottom penetrating echosounders; geophysical sensors; sonars, laser systems and photo cameras. Deploying and establishing their own sensor- and communication-network.

By combining such data sets we can unravel seafloor minerals; monitor environmental parameters, identify seafloor habitats and biodiversity; and inspect seafloor installations. By periodically repeating operations, changes can be detected, and the temporal effects of natural processes and anthropogenic activities can be documented.

Future NOR MMCM Concept

"We turn knowledge and ideas into an effective defence"

The state of the s