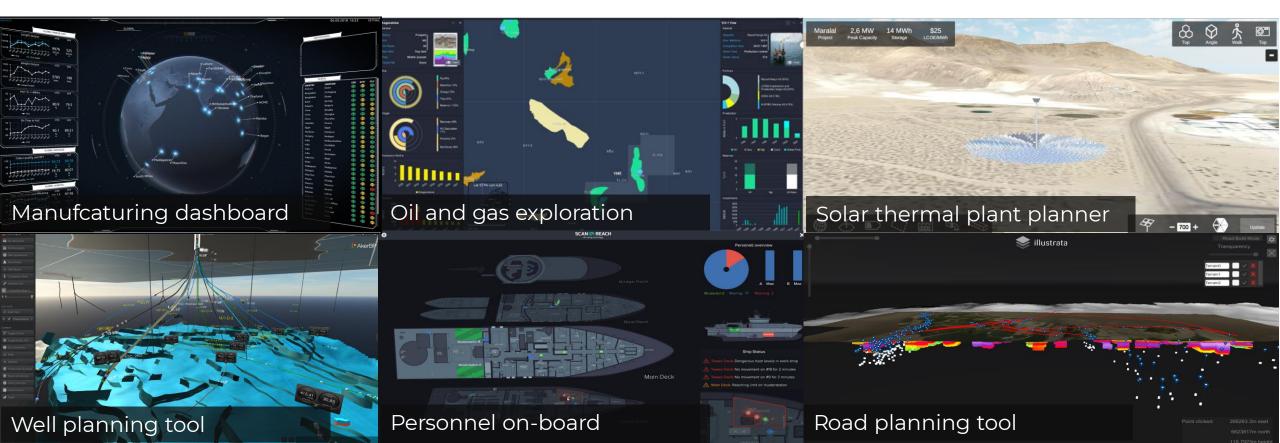
Deckplanner

Planning offhore operations with game technology

Bjarte Sebastian Hansen CEO - Goontech


Goontech – Key facts and figures

- Started as game development company Henchman & Goon in 2012
- Spin-out to Goontech in 2014
- 6 full-time employees, + small team in Ukraine
- Offices in Bergen and Oslo
- 5.5 million NOK revenue in 2018
- Owned by the founders (Bootstrapped)

Goontech - Industrial Projects

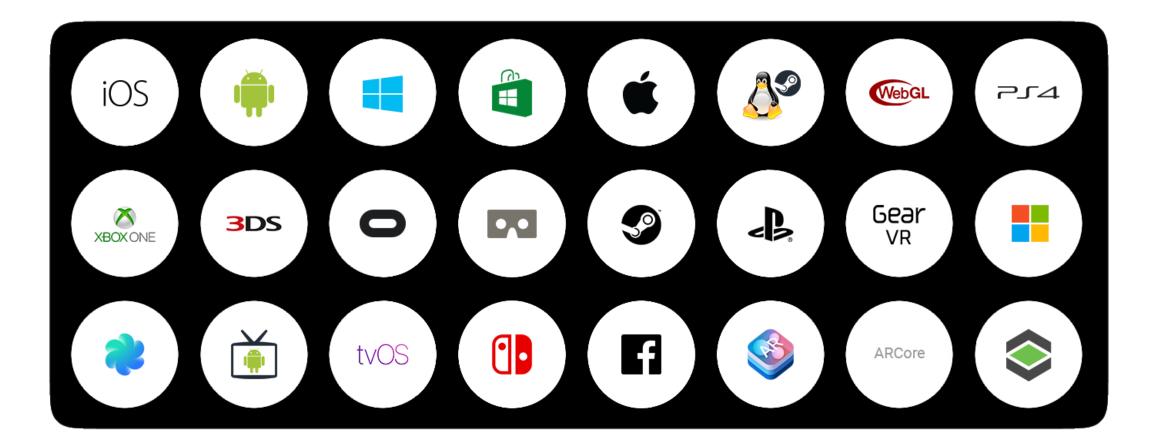
We use **data** to create visualization tools for decision support, resource management and optimized planning of operations.

Make data available to the end user, by turning it into meaningful **insight** and **information** that can be used for answering questions and thereby make decisions.

What is game technology?

"A game engine is the software that provides game creators with the necessary set of features to build games **quickly** and **efficiently**."

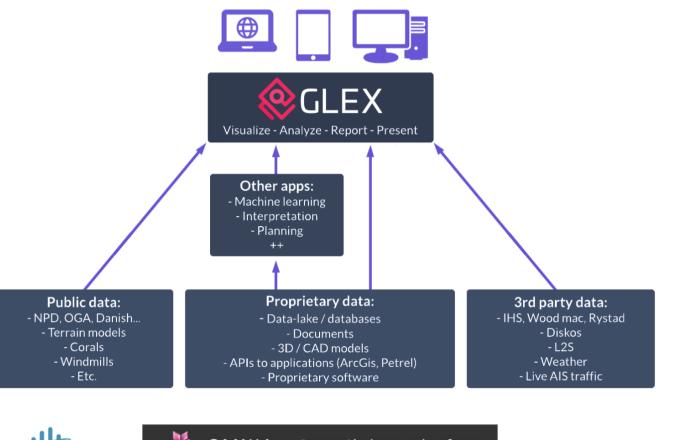
Easy to work with:


- 2D and 3D graphics
- Environment
- Physics
- Animation
- Interactivity
- Logic

«Realistic» physics

Unrealstic physics

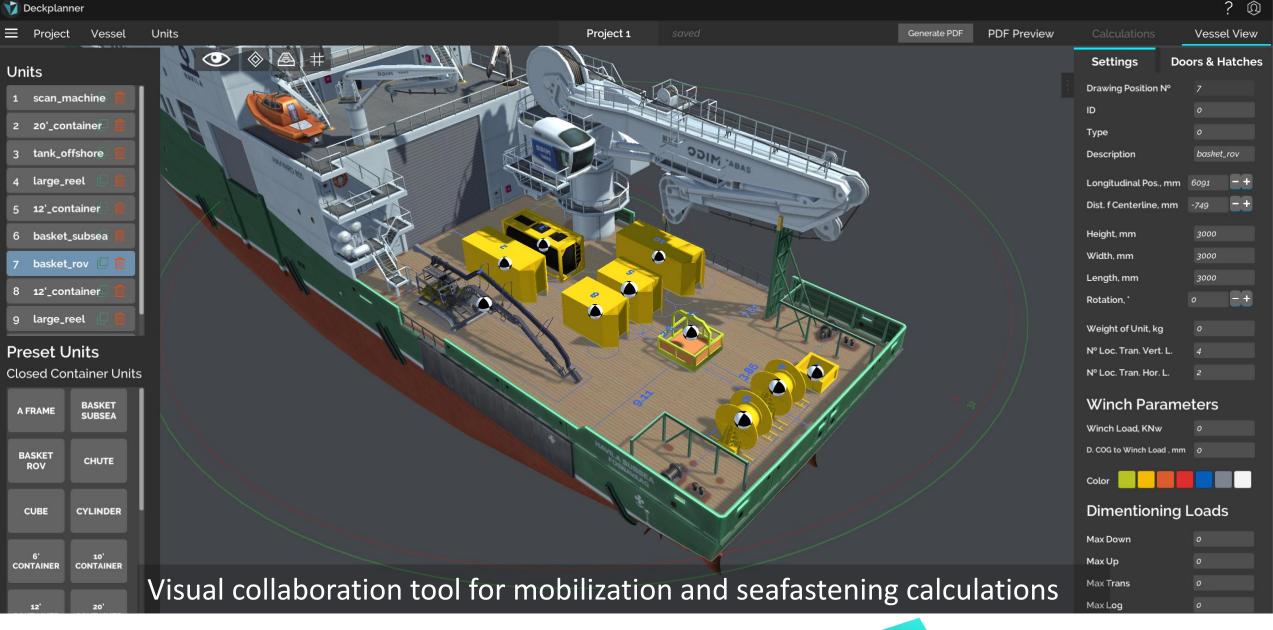
Data available on all platforms


Why is visualization important?

nine, they need to back up and orient themselves, see if there are any other numbers to align with. Maybe there's a driveaway or a building to face, or they can ask someone who actually knows.

People having an uninformed opinion about something they don't understand and proclaiming their opinion as being equally valid as facts is what is ruining the world. No one wants to do any research, they just want to be right.

Data has zero value until it informs a decision

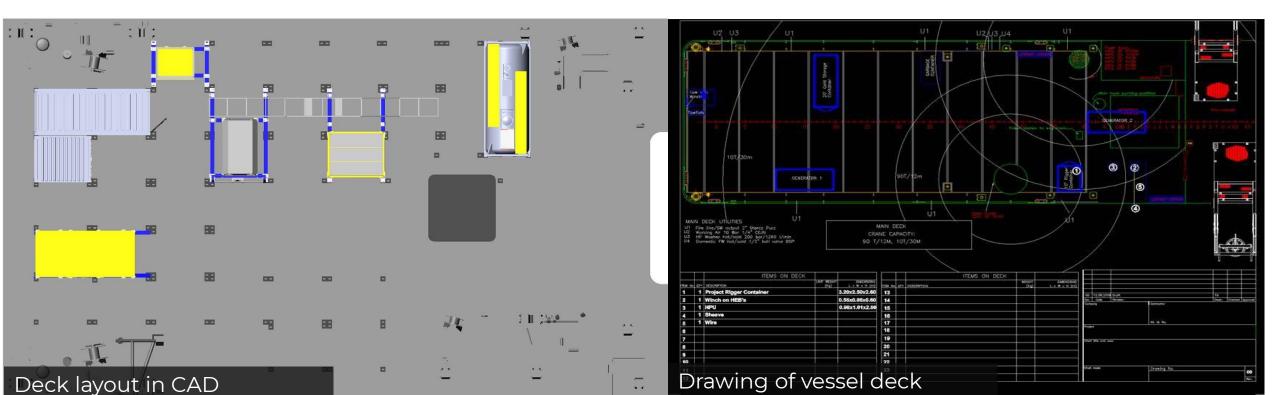


Statoil

OMNIA – Statoil data platform DATA, ANALYTICS AND SOLUTIONS FOR THE FUTURE

Offshore operations

11 11 11


81

14

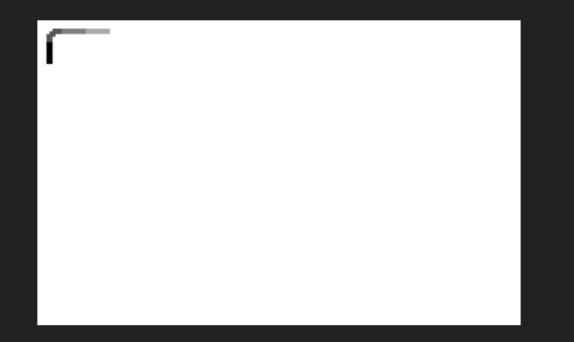
Explained by an IT guy 🙂

Current tools for layouts - CAD

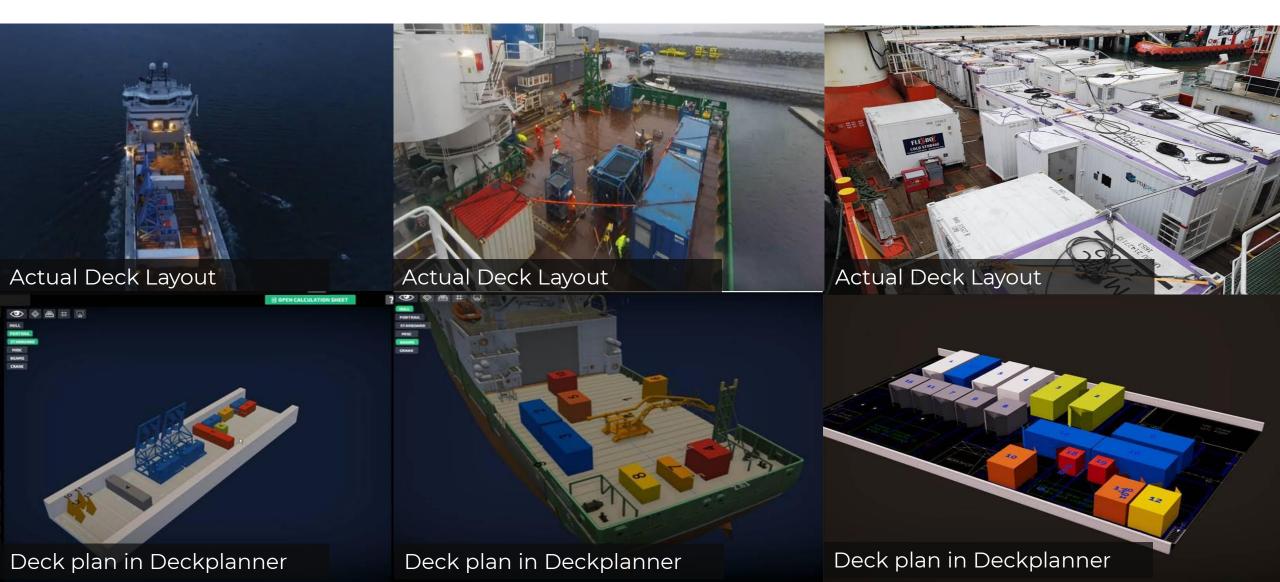
Current tools for seafastening

Match-CAD and Excel

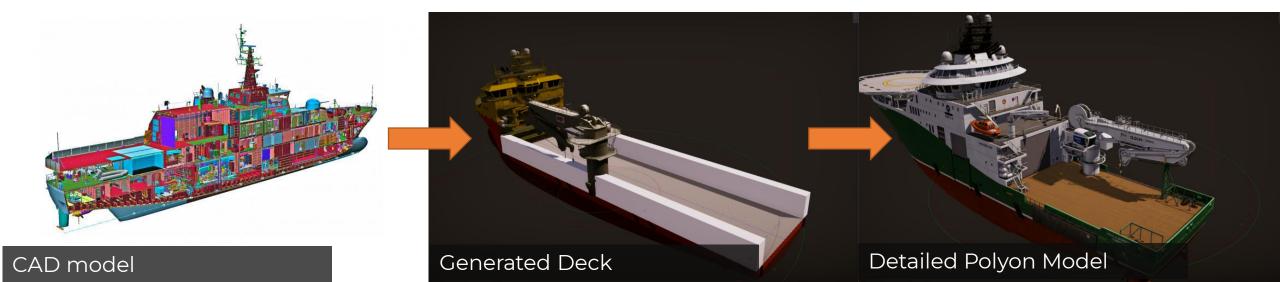
App-2/	A: Accl Calcs Reel-Fwd -	Ops Case		ULS					ULSb								B500					
e vessel accleration calculation is ba	ased on DNV Rules for Ships,	, July 2012, part 3, chapter	I, section 4.	01.54	a				ULJU					Roll					Pitch	-	Comb	
nstant					nsverse motio	n of unit L	Logitudinal m	otion of unit	Transve	rse motion o	funit L	ogitudinal m	otion of unit		COG over waterline		Pitch period:	Pitch angle:	accelerati on:		Accel Acce	
avity	$g = 9.807 \frac{m}{s^2}$			Logitudi nal dynamic																(sqr	max t((az)^ Apz)^2) at=sq	pt(ay al=
awater density	$\rho_{SW} := 1025 \ kg \cdot m^{-3}$			load Verti (Fl=al"m load			ertical ad Verti	ical Horizon	Vertical load	Vertical Ho	Ve prizon loa	ertical ad Verti	cal Horizor	ar=Ø*((2* 3.14)/Tr/2	z=z0+VC	ar=Ø"((2" 3.14)/Trn		g g=0,25°a	ap=q"((2" 3.14)/Ton	apx=q"((2); "3,14)/Tp)" Sqr	^2+ (az^2+_(o*sin	2+ (Ø)+ (a*
ssel Parameters:				w) max 31,71 50	load min 0,42 30,73	alload ma 24,14	ax load 49,10 32	min al load 2,05 11,1	max 0 49,50	load min al 12,92	load ma 44,83	ax load 47,04 1	min al load 5,38 20,6	*Rr 61 0,010	OG arz= 5,019	ar 'z 0,05	rt(L/g) i6 5,29	0/C5 8 8,491	2*Rr apz=ap 0,052	2°z arz* 0,106	2) ary)"2 3,320 5	2 +ap 5,420
ssel name	Normand Vision			31,31 56	2,62 28,53 6,45 23,66		55,14 24	9,81 11,9 4,97 10,9	6 61,26	0,36	44,26	58,83 2	1,21 22,1 2,80 20,3			0,05 0,05			0,067 0,555	0,138 0,106		5,499 5,420
ngth between Perpendiculars	L := 144.6 m	$L_1 := \frac{L}{1 m}$),57 19,55 9,54 9,94			0,81 11,73					1,94 21,9 2,87 10,0			0,05 0,05				0,138 0,106		5,499 5.420
ulded breadth	B := 27 m	1 m		16,60 30),77 8,71 1,76 7,90	11,91	27,72 1	1,76 5,8 1,08 5,4	1 35,67	-5,31	22,13	30,01 0),36 10,7),99 10,0	9 0,070	5,019	0,05	6 5,29	8 10,971	0,204	0,138	4,689 5	5,420 5,499 5,420
				16,67 3	3,61 6,05	11,97	30,54	9,11 5,8	4 40,84	-10,34	22,23	35,15 -4	1,65 10,8	4 0,070	5,019	0,05	6 5,29	8 10,971	0,589	0,138	7,166 5	5,499
ulded summer draft	T := 8.5 m				2,09 10,47 1,54 8,02			1,69 7,1 2,08 7,7					1,31 13,3 6,16 14,3			0,05 0,05				0,106 0,138		5,420 5,499
Ilded Depth	$D \coloneqq 12 m$			7,85 14	1,62 5,47 5,23 4,86	5,98	13,21 0	6,89 2,7 6,22 2,9	5 16,22		11,10	13,59	1,86 5,1 1,63 5,4	IO 0,03 ⁻	5,019	0,05	6 5,29	8 8,491	0,137	0,106	3,544 5	5,420 5,499
ulded displacement	$\Delta \coloneqq 23549 \ tonne$			0,45 1	0,23 4,00	0,00	13,01 0	0,22 Z,3I	o 1r,30	-1,30	11,20	14,02 1	J,03 3,4	0,03	5,013	0,05	0 3,23	o 10,3r1	U,Trr	0,130	4,573 0	0,433
ximum Service speed	$V \coloneqq 2 \ knot$	$V_1 \coloneqq \frac{V}{1 \ knot}$		113,90 13	33,01 16,01 3,82 11,38 39,10 63,15 0,99 57,79	16,66 55,66	39,66 15 128,60 7	18,91 5,0 5,55 8,11 73,65 26,5 2,30 43,93	6 31,27 2 51,35 8 112,12 9 245,64	-28,92	20,43 30,94 103,37 156,36	92,63 -	5,09 9,4 1,16 15,0 9,43 49,3 1,94 81,6	36 0,054	5,019 6,980	0,05 0,05 0,07 0,07	6 5,29 8 5,29	8 10,971 8 8,491	0,332 0,364	0,138 0,148	5,343 5 4,849 5	5,420 5,499 5,631 5,707
ock coefficient	$C_B \coloneqq \frac{\Delta}{\rho_{SW} \cdot L \cdot B \cdot T}$		$C_B \!=\! 0.69$		34,71 67,57	55,67	124,21 7	8,07 26,5	8 103,95	-20,73 -17,74	103,38	84,46	-1,24 49,3 -1,22 81,7	36 0,054	6,980	0,07 0,07 0,07	8 5,29	8 8,491	0,164 0,212	0,191 0,191	3,654 5	5,631 5,707
ssel center of motion																						
														B200		Common	B300	• •	B400			
ngitudinal (from AP)	$X_{COM} \coloneqq 0.45 \cdot L$		$X_{COM} = 65.1 \ m$													accelera on	ti Surge	Combined sway/yaw	Hoove	Roll (sin	angle	
ansverse (assumed at CL)			$Y_{COM} = 0 m$											Wave			er accelerat		accelerati	Keel amp	litude)	
tical from Baseline	$Z_{COM} := min\left(\left(\frac{D}{4} + \frac{T}{2}\right)\right)$	$\left ,\frac{D}{2}\right $	$Z_{COM} = 6 m$								ssel Ro	oll dius of Meta	cent Max	Cofficient	Cv=min(sq Cvl=	: min(V	on ax=0,2°g	on:	on: Roll peri az=(0,7*g		(50(1,2	
rgo Location									Length,LP			vration er he	-		rt(L)*(1/50) /sqrt	t(L);0, a0=(3°C)	v) a0*sqrt(C		*a0)/sqrt(Tr=2*kr/	sq 0,0;	25)*Tr)	
ngitudinal COG position (from AP)	$X_{cargo} := 35 m$							el name bio Commander	P(L) 85	Width (B) t (20	Cb) (kr 0.65	r) (GM) 7,8	Speed (\ 1.4	V) 2°L 0 6,73);0,2 8 0,18	/L+Cv*Cv 0,80 0,3		a0 6 0,12	Cb) rt(GM) 0,33 13,		B+75) 27,77	
nsverse COG position (from CL)	$Y_{cargo} := 2 m$							pic Commander	85	20	0,65	7,8		13 6,73		1,41 0,5					27,77	


Calculations in Excel

Calculations in Math-CAD


X = 30.1 m

Demo



Example mobilizations

Data is available – but....

- Hard to get access due to organizational barriers
- Necessary conversion of data is very labor intensive
- Uncertainty around legal framework for data sharing

Thank you!

Bjarte Sebastian Hansen Email: bjarte@goontech.no Phone: +47 95268076

