The role of the third party
Certification of floating wind farms

Erik L. Walter
31 May 2018
Our involvement in offshore wind...

>97%
Played a role in the majority of the world’s offshore wind projects

>20 GW
offshore wind resource assessment studies

>50 GW
DNV GL has provided Owner’s Engineer and Due Diligence services

Global reach – local application
DNV GL currently involved in supporting onshore wind project in Mauritius

2,500
energy experts, who combine industry expertise, multi-disciplinary skills and innovation to solve complex technical issues in challenging environments

>90%
of offshore wind farms are certified by DNV GL

Offshore standards and recommended practices
Widely accepted in the renewable energy industry

>30 years
Experience in supporting the development of offshore wind farms
We continuously develop and maintain the industry rules and standards.
The second edition of our standard for floating wind turbines, DNVGL-ST-0119, will be issued in 2018.

We have supported Customers with concept design support for several floater concepts.

We have delivered multiple floating wind market studies and technical due diligence projects.

We have done verification and independent analysis of several floaters and wind farms.

BLADED is developed, validated and maintained by DNV GL.

Bladed used in over 20 different floating wind projects in the last 10 years.
Standard development - DNV-OS-J103 to be revised to become DNVGL-ST-0119

- DNV-OS-J103 published June 2013
- Being revised during 2016 – 2018 to become DNVGL-ST-0119
- Work performed internally in DNV GL, but with input from industry
- Reflect industry experience since the first issue
- Consideration of new international standards e.g. IEC TS 61400-3-2
- Harmonize with new and revised DNV GL standards
Main revisions

- Reference to new DNV GL standards (e.g. DNVGL-ST-0126, DNVGL-ST-0437)
- Formulation of floater-specific load cases
- Requirements for investigations to be performed to support the exemption from designing unmanned floaters against damage stability
- Fatigue factors for substructure on similar level as for bottom-fixed structures
- Fatigue factors for steel mooring lines and tendons
- Recommendations for shared anchor points
- Floater motion control system and its integration with the control and protection system for the turbine
Way forward

- External industry hearing during fall 2017
- Comments received during the hearing have been considered
- Update of the manuscript is ongoing
- The revised standard is expected to be published by mid 2018
Why Certification? We asked the industry

- Industry focus on reducing costs by adopting new technologies and business models
- Anything new brings potential risk
- **Certification is one of the key tools in managing risk**
- Certification needs to evolve with the industry to support growth and innovation
- Certification could add more value if continued to deepen technical insight
- **Traditional on-offshore: 65% say certification adds value by verifying quality**
- **Floating: 82% say certification adds value by verifying quality**

*2017: Certification for the wind energy of tomorrow.
**2015: DNV GL Floating wind customer survey
DNV GL-SE-0422 Certification of floating wind turbines

- Service description specific for floating installations - includes all development phases (replaces DNVGL-SE-0190):
 - Applicable for components and complete systems
 - Risk based approach
Concept feasibility phase

Objectives

- Identify show stoppers, and issue recommendations
- Identify possible novelties, requiring **technology qualification**
- Integrated part of the certification process
- Add confidence towards stakeholders

Scope of Work focuses on

- design methodologies and assumptions
- standards for the floating system and consistency

Example: Review of site conditions and standards for a floating wind project in Taiwan (EOLFI/Cobra)
Project certification phase

- **Objectives**
 - Ensure safety and integrity
 - Provide independent analysis
 - Cover critical technical interfaces
 - Assure documentation is in order and complete

- **Scope of Work**
 - Site Conditions
 - Design Basis
 - ILA
 - Design
 - Manufacturing
 - Transportation & installation
 - Commissioning

Example: Certification of EolMed-Gruissan Floating Windfarm for the Design Basis, Design Evaluation incl. Integrated Load Analysis

Example 2: Verification of Hywind Scotland, including independent load and response analyses
3 scheduled releases in 2018:

DNVGL-ST-0119 Design of floating wind turbine structures (replaces DNV-OS-J103)
External hearing completed. Internal final approval in May.

DNVGL-RP-0286 Coupled analysis of floating wind turbines (JIP - new)
Draft ready in April, publication expected in end of 2018

DNVGL-SE-0422 Certification of floating wind turbines (service specification – new)
External hearing mid February 2018
Wind-powered water injection

The innovation

- Wind-powered water injection is a new concept integrating floating wind with O&G operations
- Wind-powered water injection will take place in a harsh offshore environment
- A microgrid, including energy storage, enables controlled start-up and shut-down of the system and ensure that critical systems are accounted for in periods with no wind.
- A key to understand the stability of the microgrid is to understand the power consumption in the different operational phases, how vulnerable the system is for sudden changes in power output. Lab tests will be conducted to validate the stability of the microgrid.

The challenge

- Stability of the microgrid
- Optimal system configuration
- Redundancy level

The benefit

- ‘Green innovation’ that is positive for the O&G industry
- Increased technical and market related understanding of the integration of renewable energy with O&G operations
- Increased level of maturity, enabling demonstration in its real offshore environment
Reducing risk via certification – a 10 years journey

Hywind demo 2.3MW (2008)

Pelastar FEED (2013)

Aerodyn SCD nezzy – Concept (2014)

VolturnUS – concept (2014)

ACS - Concept (2014-2015)

WindFloat Atlantic (2015- on-going)

Nautilus – concept

New 2018: DNVGL-SE-0422
DNVGL-ST-0119
DNVGL-RP-0286

EolMed-Gruissan Floating Windfarm (ongoing)

Selected references
Thank you for your attention

Contact
Erik.Lokken.Walter@dnvgl.com

www.dnvgl.com