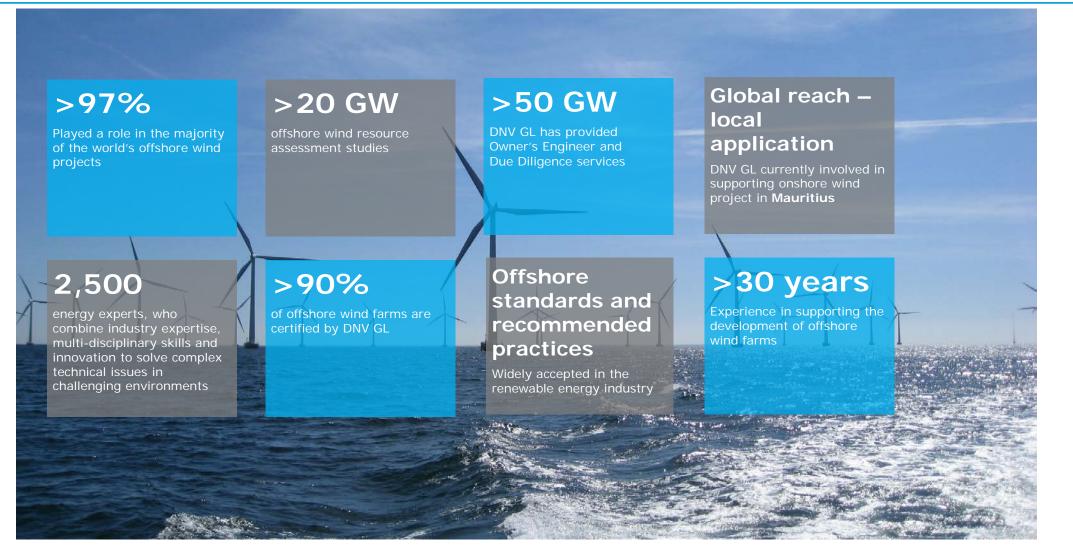
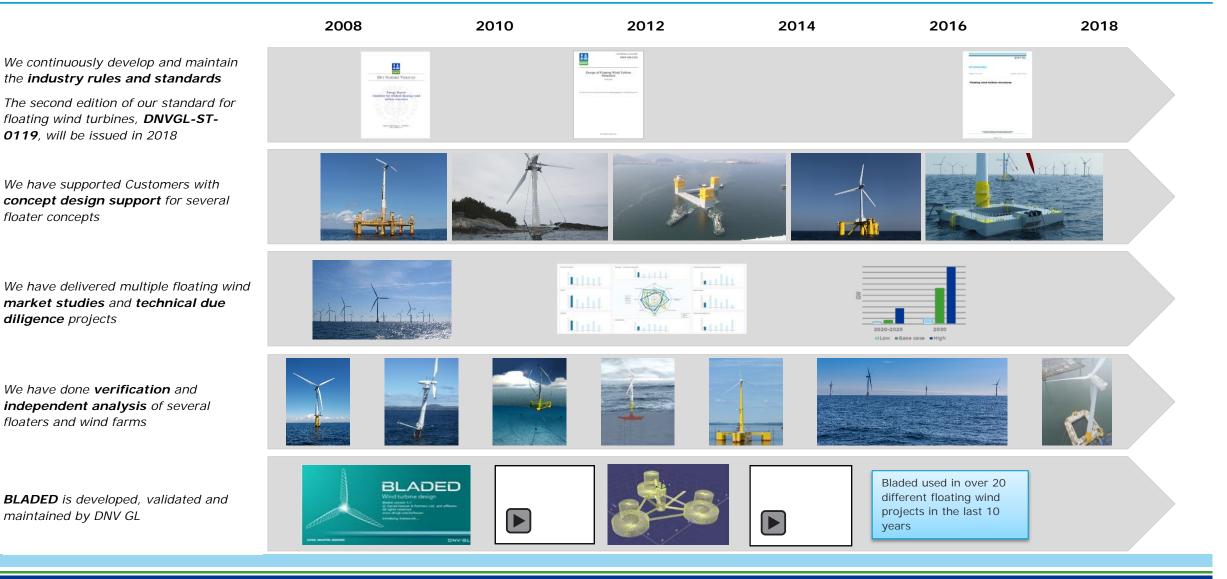
DNV·GL


ENERGY

The role of the third party

Certification of floating wind farms

Erik L. Walter 31 May 2018


Our involvement in offshore wind...

2

DNV GL in floating wind development

Key projects and innovation

floater concepts

diligence projects

Standard development - DNV-OS-J103 to be revised to become DNVGL-ST-0119

- DNV-OS-J103 published June 2013
- Being revised during 2016 2018 to become DNVGL-ST-0119
- Work performed internally in DNV GL, but with input from industry
- Reflect industry experience since the first issue
- Consideration of new international standards e.g. IEC TS 61400-3-2
- Harmonize with new and revised DNV GL standards

OFFSHORE STANDARD DNV-OS-J103		DNV·GL
Design of Floating Wind Turbine Structures	STANDARD	Edition xxxx 2017
The electronic pdf version of this document found through <u>http://www.dox.com</u> is the officially binding version	Design of floatin	g wind turbines
DET NORSKE VERITAS AS	The statutely pf version of this document "The documents	Nexed through http://www.divegl.com is the efficially binding version. we available they dramp in POP format. DNV GL AS

Main revisions

- Reference to new DNV GL standards (e.g. DNVGL-ST-0126, DNVGL-ST-0437)
- Formulation of floater-specific load cases
- Requirements for investigations to be performed to support the exemption from designing unmanned floaters against damage stability
- Fatigue factors for substructure on similar level as for bottom-fixed structures
- Fatigue factors for steel mooring lines and tendons
- Recommendations for shared anchor points

31 May 2018

 Floater motion control system and its integration with the control and protection system for the turbine

Way forward

- External industry hearing during fall 2017
- Comments received during the hearing have been considered
- Update of the manuscript is ongoing
- The revised standard is expected to be published by mid 2018

	DNV·GL		
STANDARD			
DNVGL-ST-0119	Edition xxxx 2017		
Design of floating wind turbine structures			
	h http://www.drvgl.com is the officially binding version. free of charge in PDF format.		

Why Certification? We asked the industry

- Industry focus on reducing costs by adopting new technologies and business models
- Anything new brings potential risk
- Certification is one of the key tools in managing risk
- Certification needs to evolve with the industry to support growth and innovation
- Certification could add more value if continued to deepen technical insight
- Traditional on-offshore: 65% say certification adds value by verifying quality*
- Floating: 82% say certification adds value by verifying quality**

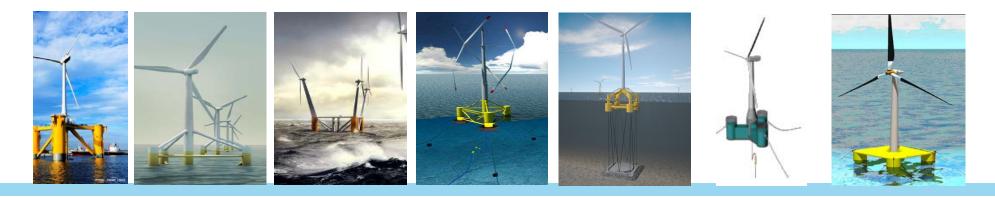
DNV GL-SE-0422 Certification of floating wind turbines

Service description specific for floating installations - includes all development phases (replaces DNVGL-SE-0190):

- Applicable for components and complete systems
- Risk based approach

DNV.GL

Edition xxxx 2017


Objectives

- Identify show stoppers, and issue recommendations
- Identify possible novelties, requiring technology qualification
- Integrated part of the certification process
- Add confidence towards stakeholders

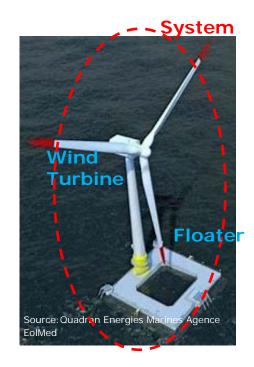
Scope of Work focuses on

- design methodologies and assumptions
- standards for the floating system and consistency

Example: Review of site conditions and standards for a floating wind project in Taiwan (EOLFI/Cobra)

9

Objectives


Ensure safety and integrity	Provide independent analysis	Cover critical technical interfaces	Assure documentation is in order and complete
--------------------------------	------------------------------------	---	--

Scope of Work

- Site Conditions
- Design Basis
- ILA
- Design
- Manufacturing
- Transportation & installation
- Commissioning

Example: Certification of EolMed-Gruissan Floating Windfarm for the Design Basis, Design Evaluation incl. Integrated Load Analysis

Example 2: Verification of Hywind Scotland, including independent load and response analyses

DNV GL standards – Assisting the industry to develop safely

CHIOP SHOP 2017

3 scheduled releases in 2018:

DNVGL-ST-0119 Design of floating wind turbine structures (replaces DNV-OS-J103) External hearing completed. Internal final approval in May.

DNVGL-RP-0286 Coupled analysis of floating wind turbines (JIP - new) Draft ready in April, publication expected in end of 2018

DNVGL-SE-0422 Certification of floating wind turbines (service specification – new) External hearing mid February 2018

STANDARD

Design of floating wind turbines

1010 10 10

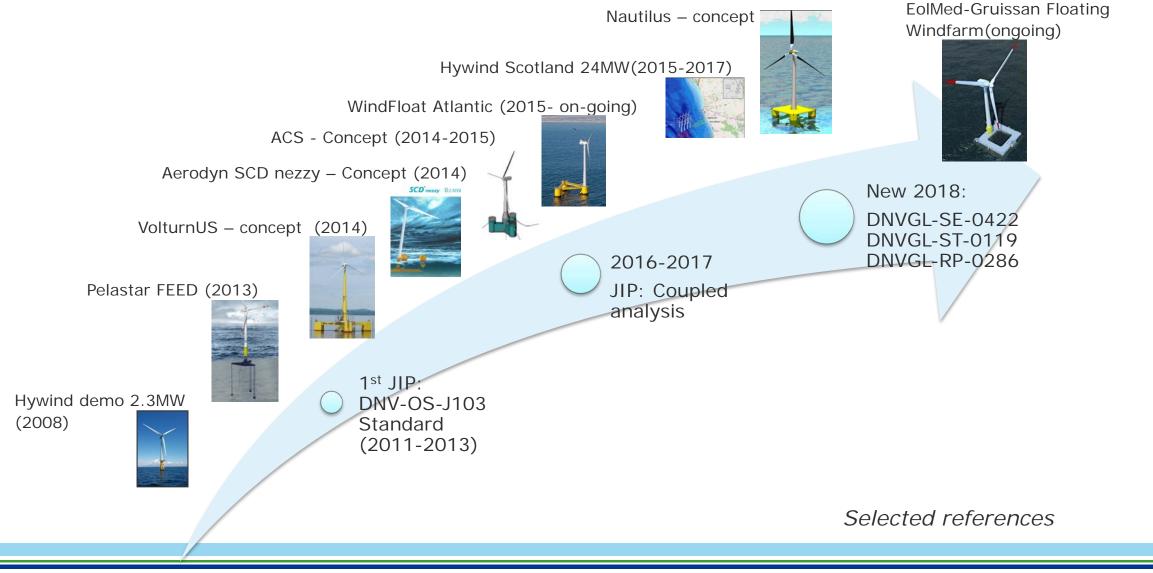
UNIVE STREET

The innovation

- Wind-powered water injection is a new concept integrating floating wind with O&G operations
- Wind-powered water injection will take place in a harsh offshore environment
- A microgrid, including energy storage, enables controlled start-up and shut-down of the system and ensure that critical systems are accounted for in periods with no wind.
- A key to understand the stability of the microgrid is to understand the power consumption in the different operational phases, how vulnerable the system is for sudden changes in power output. Lab tests will be conducted to validate the stability of the microgrid.

The challenge

- Stability of the microgrid
- Optimal system configuration
- Redundancy level


The benefit

- 'Green innovation' that is positive for the O&G industry
- Increased technical and market related understanding of the integration of renewable energy with O&G operations
- Increased level of maturity, enabling demonstration in its real offshore environment

Reducing risk via certification – a 10 years journey

31 May 2018

Thank you for your attention

Contact

Erik.Lokken.Walter@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

14 DNV GL ©

DNV·GL